


Mini VRF-системы EKVO-MH являются оптимальным выбором для коттеджей и небольших коммерческих помещений благодаря возможности прокладки длинных коммуникаций, которые превосходят ограничения обычных бытовых и мульти-сплит-систем. Они обеспечивают высокую гибкость установки и эффективное кондиционирование, создавая идеальный микроклимат даже в условиях сложных планировок, гарантируя комфорт и свежесть воздуха.

- DC-инверторный компрессор
- ЕС-вентиляторы

- Большая длина трассы
- Компактные габариты



#### ПРОТЯЖЕННЫЕ МАГИСТРАЛИ

Технология глубокого переохлаждения хладагента позволяет значительно увеличить протяженность соединительных магистралей — к примеру, длина от первого разветвителя до самого удаленного блока может достигать 40 метров даже для наименьшей модели. Это предоставляет дополнительную гибкость в проектировании системы в условиях ограниченного пространства.

# ВЫСОКОЭФФЕКТИВНЫЙ ИНВЕРТОРНЫЙ КОМПРЕССОР

Компрессоры с полным DC инвертором и камерой высокого давления минимизируют тепловые потери и повышают эффективность сжатия благодаря прямому впуску хладагента. Это решение значительно превосходит по производительности компрессоры с камерами низкого давления. Дополнительно, использование синхронных двигателей с постоянными магнитами улучшает общую эффективность системы по сравнению с традиционными DC инверторными компрессорами.



### БЕСШУМНАЯ РАБОТА СИСТЕМЫ

Наружный блок оснащён малошумным вентилятором и оптимизированной конструкцией гидравлического контура. Использование продвинутых технологий управления переохлаждением и возврата масла в режиме обогрева эффективно минимизирует шум, создаваемый потоком жидкости. Это способствует созданию более тихой рабочей среды, соответствуя высоким требованиям к уровню шума.



euroklimate.com

#### Эффективность Сравнение эффективности коррекции коэффициента мощности 99 % 98 % 97 % 96% 95 % Стандартная коррекция 94% Высокоэффективная коррекция от ЕК 93 % 1000 2000 3000 4000 5000 6000 Энергопотребление (Вт)

### ВЫСОКОЭФФЕКТИВНАЯ КОРРЕКЦИЯ КОЭФФИЦИЕНТА МОЩНОСТИ КОМПРЕССОРА

Высокоэффективная цифровая коррекция поддерживает оптимальный коэффициент мощности в реальном времени, улучшая стабильность работы компрессора и снижая энергопотребление системы. Например, для наружного блока с номинальной мощностью 5 кВт ежедневная экономия составит 1,2 кВт по сравнению со стандартной коррекцией.

## ШИРОКИЙ ТЕМПЕРАТУРНЫЙ ДИАПАЗОН

Системы EKVO-MH способны стабильно работать в режиме охлаждения даже при отрицательных температурах воздуха благодаря эффективному поддержанию давления конденсации. Это гарантирует комфортный микроклимат независимо от внешних условий и обеспечивает надежную эксплуатацию.







## БЕССЕНСОРНЫЙ ИНВЕРТОРНЫЙ ВЕНТИЛЯТОР С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Технология бессенсорного управления снижает шум и вибрации двигателя вентилятора, способствуя более тихой работе наружного блока. Широкий диапазон регулирования скорости от 5 до 44 Гц позволяет достичь плавной работы и заметной экономии энергии по сравнению с традиционными инверторными двигателями.

#### подробнее о серии



Сканируйте QR-код, чтобы узнать больше об оборудовании ЕК на официальном сайте.

Вас ждет техническая информация, документация и профессиональные консультации от наших специалистов.

## ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

| Модель                                   |            |          | EKVO030MHNEA-A           | EKVO040MHNEA-A  | EKVO045MHNEA-A   | EKVO050MHNEA-A  | EKVO060MHNEA-A   |  |
|------------------------------------------|------------|----------|--------------------------|-----------------|------------------|-----------------|------------------|--|
| Производительность                       | Охлаждение | кВт      | 8                        | 10              | 12,1             | 14,1            | 16               |  |
|                                          | Нагрев     | кВт      | 9                        | 9 11            |                  | 16              | 18               |  |
| Потребляемая<br>мощность                 | Охлаждение | кВт      | 2,1                      | 2,7             | 3,5              | 3,9             | 4,8              |  |
|                                          | Нагрев     | кВт      | 1,9                      | 1,9 2,5         |                  | 4,2             | 4,7              |  |
| Показатели<br>эффективности              | EER        |          | 3,90                     | 3,70            | 3,51             | 3,60            | 3,37             |  |
|                                          | СОР        |          | 4,74                     | 4,40            | 4,81             | 3,85            | 3,87             |  |
| Электропитание                           |            | В, Гц, Ф | 220 ~ 240, 50, 1         |                 |                  |                 |                  |  |
| Макс. количество внутренних блоков       |            | шт.      | 4                        | 5               | 6                | 8               | 9                |  |
| Суммарная мощность подключаемых ВБ       |            | %        | 50 ~ 135                 |                 |                  |                 |                  |  |
| Кол-во вентиляторов                      |            | шт.      | 1                        |                 |                  |                 | 2                |  |
| Расход воздуха                           |            | м3/ч     | 3900                     | 4000            | 4400             | 5200            | 6600             |  |
| Уровень звукового давления               |            | дБ(А)    | 56 57                    |                 |                  | 58              |                  |  |
| Диаметр труб                             | Жидкость   | мм       | 9,52                     |                 |                  |                 |                  |  |
|                                          | Газ        | мм       | 15,9                     |                 |                  |                 | 19,05            |  |
| Заводская заправка<br>хладагента (R410A) |            | КГ       | 1,8                      |                 | 2,0              | 3,3             |                  |  |
| Габариты (Ш x В x Г)                     | Нетто      | мм       |                          | 980 x 790 x 360 |                  | 940 x 820 x 460 | 900 x 1345 x 340 |  |
|                                          | Брутто     | мм       | 1097 x 937 x 477         |                 | 1023 x 973 x 563 |                 | 998 x 1500 x 458 |  |
| Вес нетто/брутто                         |            | КГ       | 80 / 90 85 / 95 98 / 108 |                 | 98 / 108         | 112 / 123       |                  |  |
| Диапазон рабочих<br>температур           | Охлаждение | °C       | <b>-5 ∼ 52</b>           |                 |                  |                 |                  |  |
|                                          | Нагрев     | °C       | -20 ~ 27                 |                 |                  |                 |                  |  |

## ПРЕДЕЛЬНЫЕ ДЛИНЫ ФРЕОНОПРОВОДОВ

|               | Модель                                           | 030-045       | 050-060 |     |     |
|---------------|--------------------------------------------------|---------------|---------|-----|-----|
| Длина         | Общая                                            |               |         | 250 | 300 |
|               | Между наружным и<br>внутренним блоком            | Реальная      | М       | 100 | 120 |
|               |                                                  | Эквивалентная | М       | 120 | 150 |
|               | Между первым разветвителем и внутренним блоком м |               |         | 40  | 40  |
| Перепад высот | Между наружным и<br>внутренним блоками           | НБ выше       | М       | 30  | 50  |
|               |                                                  | НБ ниже       | М       | 30  | 40  |
|               | Между внутренними блоками м                      |               |         | 10  | 15  |

euroklimate.com 11